CONFORMATIONAL ANALYSIS OF METAL CHELATES. A MOLECULAR MECHANICAL STUDY OF THE RELATIVE STABILITY OF COBALT(III) 2,3-DIAMINOBUTANE-N, N, $\mathrm{N}^{\prime}, \mathbf{N}^{\prime}$-TETRAACETATE COMPLEXES

František Pavelčík and Jaroslav Majer
Department of Analytical Chemistry,
Pharmaceutical Faculty, Comenius University, 83232 Bratislava

The stereochemistry and relative energy of diastereoisomers of $A-[C o(D B T A)]^{-}$were studied in dependence on the absolute configuration of the ligand using molecular mechanical calculations. The calculated thermodynamic stabilities of the complexes decrease in the order (S, S) --DBTA $>(R, S)$-DBTA $>(R, R)$-DBTA. The destabilization factors are primarily repulsion non-bonding interactions between the axial methyl group and atoms of the acetate ring, R. (S, S) - and (R, R)-DBTA exhibit high diastereoselectivity in octahedral complexes. The large steric strain in the meso-DBTA complex can lead to opening of one chelate ring.

Molecular mechanical calculations have found broad application in the study of the stereochemistry and molecular properties (deformation energies, heats of formation, vibrational spectra) of organic and coordination compounds ${ }^{1-4}$. The possible application of methods for studying the complexes of multidentate amino acid derivatives has recently been discussed ${ }^{5,6}$.

A number of works by one of the authors deal with the study of the stability constants of the 2,3-diaminobutane- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$ tetraacetic acid ($\mathrm{H}_{4} \mathrm{DBTA}$) complexes ${ }^{7-11}$ and it was found that complexes of the racemic form generally exhibit higher stability than complexes of the meso form. However, problems connected with the stereochemistry and a rational explanation of this phenomenon are practically untouched in these works ${ }^{7-11}$. Consequently, this work will deal with the importance of steric effects for the stability of the complexes and the diastereoselectivity of optically active DBTA. The absolute configurations of the diastereoisomers of $[\mathrm{Co}((S, S) \text {-DBTA })]^{-}$are depicted in Fig. 1.

CALCULATIONS AND RESULTS

The energy and geometry of the $[\mathrm{Co}(\mathrm{DBTA})]^{-}$complexes were calculated in a molecular mechanical approximation; the details of the method used used have already been described ${ }^{5,6}$. The total energy of the molecule consists of the bond length deformation energy (E^{R}) from the equilibrium values, the torsion energy (E^{Φ}), the energy of deformation of the planarity of the

Fig. 1
Schematic depiction of the two isomers of $[\operatorname{Co}((S, S) \text {-DBTA })]^{-}$with designated conformation of the chelate rings. a) Absolute configuration of the complex ${ }^{20}$ (OC-6-21-C) or $\Lambda \Delta \Lambda$ (ref. ${ }^{21}$) (abbreviated to the symbol A). b) Absolute configuration of the complex ${ }^{20}$ (OC-6-21-A) or $\Delta \Lambda \Delta\left(\right.$ ref. ${ }^{21}$) (abbreviated to the symbol Δ)

Fig. 2
Perspective projection of the minimized structure of the $\Lambda-[\mathrm{Co}((S, S)-\mathrm{DBTA})]^{-}$anion nonbonding interactions with energy greater than $1.20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
carboxyl groups (E^{δ}) and the non-bonding energy (E^{NB}). The molecular geometry was optimized by the Newton-Raphson procedure. The vibration frequencies were calculated using the multidimensional potential surface, resulting from minimization. The vibrational frequencies and the geometry of the molecules were used for calculation of the vibrational and rotational contributions to the enhalpy ($H_{\text {v.r. }}$), the vibrational energy at 0 K (ZPE) and the vibrational-rotational -translational contribution to the entropy ($S_{\text {v.r.T. }}$). (The MOLBLD program ${ }^{12}$, used in the calculations, is a modification of the Boyd's program ${ }^{13}$.) The potential function parameters were taken from Buckingham ${ }^{14}$ (set I in ref. ${ }^{6}$). The calculations were carried out for three diastereoisomers: Λ - $[\mathrm{Co}((S, S) \text {-DBTA })]^{-}, \Lambda-[\mathrm{Co}((R, S) \text {-DBTA })]^{-}$and $\Lambda-[\mathrm{Co}((R, R) \text {-DBTA })]^{-}$. Models were derived from the structural data for $[\operatorname{Co}(E D T A)]^{-}$(ref. ${ }^{15}$). The coordinates of the atoms of the methyl groups and of the hydrogen atoms were calculated using the HELPR program ${ }^{16}$. The minimized geometry in internal coordinates and deformation energy values are given in Tables I-III. In Figs 2-4 are depicted the calculated structures of the complexes with indication of important non-bonding interactions. The individual atoms are designated according to the type of atom and type of chelate ring in which they participate. Symbols a, e designate

Table I
The minimized geometry and deformation energy of Λ - $[\mathrm{Co}((S, S) \text {-DBTA })]^{-}$

Bond lengths					
Bond	R, nm	$E_{\mathrm{R}}, \mathrm{kJ} \mathrm{mol}^{-1}$	Bond	R, nm	$E^{\mathrm{R}}, \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{Co}-\mathrm{N}$	0.1941	0.25	$\mathrm{C}_{\mathrm{G}^{-}-\mathrm{C}_{G}^{\prime}}$	$0 \cdot 1530$	$0 \cdot 17$
$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}$	0.1892	0.04	$\mathrm{C}_{\mathrm{G}}^{\prime}-\mathrm{O}_{\mathrm{G}}$	$0 \cdot 1294$	$0 \cdot 04$
$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}$	0.1894	0.00	$\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	$0 \cdot 1492$	0.92
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}$	0.1487	0.54	$\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	0.1516	0.00
$\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	0.1545	0.33	$\mathrm{C}_{\mathrm{R}}^{\prime}-\mathrm{O}_{\mathrm{R}}$	0.1284	$0 \cdot 08$
$\mathrm{N}-\mathrm{C}_{\text {G }}$	0.1481	0.21			
Bond angles					
Angle	θ, deg	$E^{\theta}, \mathrm{kJ} \mathrm{mol}^{-1}$	Angle	θ, deg	$E^{\theta}, \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{N}-\mathrm{Co}-\mathrm{N}$	$91 \cdot 1$	0.08	$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}$	$103 \cdot 0$	1.51
$\mathrm{N}-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}$	86.2	0.92	$\mathrm{N}-\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	$105 \cdot 7$	$1 \cdot 05$
$\mathrm{N}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}$	$87 \cdot 3$	0.46	$\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}-\mathrm{O}_{\mathrm{G}}$	118.3	$0 \cdot 29$
$\mathrm{N}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}^{\mathrm{s}}$	95.5	1.88	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	$109 \cdot 6$	3.98
$\mathrm{O}_{\mathrm{G}}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}^{\mathrm{S}}$	85.9	1.05	$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	108.9	0.00
$\mathrm{O}_{\mathrm{G}}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}$	$91 \cdot 4$	$0 \cdot 13$	$\mathrm{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	$109 \cdot 8$	0.00
$\mathrm{O}_{\mathrm{G}}-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}$	$97 \cdot 3$	$3 \cdot 35$	$\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}-\mathrm{O}_{\mathrm{R}}$	118.3	$0 \cdot 29$
$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}$	$103 \cdot 9$	$1 \cdot 17$	$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	114.2	$1 \cdot 26$
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	$106 \cdot 5$	0.80	$\mathrm{C}_{\mathrm{E}}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}$	$115 \cdot 4$	$3 \cdot 22$
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {e }}$	113.9	1.76	$\mathrm{C}_{\mathrm{E}}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	114.2	2.05
$\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {e }}$	$112 \cdot 8$	1.00	$\mathrm{C}_{\mathrm{G}}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	$110 \cdot 4$	$0 \cdot 08$

Table I
(Continued)

predominant axial or equatorial character of the substituent. Symbol s in the tables indicates the symmetrically related atom. The calculations were carried out on a Siemens 4004/150 computer.

DISCUSSION

The conformations of the individual chelate rings can be described in all three cases by conformation type $\delta-\lambda \lambda-\lambda \lambda$ given by Lee ${ }^{17}$ or as $E, G / R$ according to Porai-- Koshits ${ }^{18}$.

In $\Lambda-[\mathrm{Co}((S, S)-\mathrm{DBTA})]^{-}$, both methyl groups are equatorial (Fig. 2) and the complex anion has a two-fold axis of symmetry. Consequently, the description is complete if data on one half of the molecule is given. The geometry of the chelate rings and the individual deformation energies are close to the analogous values found for the $[\mathrm{Co}(E D T A)]^{-}$anion. The basic character of the strain is not changed in comparison with the EDTA complex, but certain differences result from large

Fig. 3
Perspective projection of the minimized structure of the $\Lambda-[\operatorname{Co}((R, S)-\text { DBTA })]^{-}$anion. .-.... nonbonding interactions with energy greater than $1.30 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Fig. 4
Perspective projection of the minimized structure of the $\Lambda-[\mathrm{Co}((R, R)-\mathrm{DBTA})]^{-}$anion. nonbonding interactions with energy greater than $1.70 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Table II
The minimized geornetry and deformation energy of $A-[\operatorname{Co}((R, S)-\mathrm{DBTA})]^{-}$

Bond lengths					
Bond	R, nm	$\begin{gathered} E^{\mathrm{R}} \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	Bond	R, nm	$\underset{\mathrm{kJ} \mathrm{~mol}^{-1}}{E^{\mathrm{R}}}$
$\mathrm{Co}-\mathrm{N}(1)$	0.1936	$0 \cdot 13$	$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{\mathrm{E}}(2)$	$0 \cdot 1552$	0.71
$\mathrm{Co}-\mathrm{N}(2)$	0.1945	0.33	$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}^{\text {c }}$	$0 \cdot 1543$	$0 \cdot 25$
$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(1)$	$0 \cdot 1892$	0.04	$\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}^{2}$	$0 \cdot 1543$	$0 \cdot 25$
$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(2)$	0.1892	0.00	$\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)$	0.1529	$0 \cdot 13$
$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(2)$	$0 \cdot 1894$	$0 \cdot 00$	$\mathrm{C}_{\mathrm{G}}^{\prime}(1)-\mathrm{O}_{\mathrm{G}}(1)$	0.1293	$0 \cdot 00$
$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)$	$0 \cdot 1893$	0.04	$\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{R}^{\prime}(2)$	0.1516	0.04
$\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)$	0.1489	$0 \cdot 63$	$\mathrm{C}_{\mathrm{R}}^{\prime}(2)-\mathrm{O}_{\mathrm{R}}(2)$	0.1284	$0 \cdot 08$
$\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)$	$0 \cdot 1483$	$0 \cdot 29$	$\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)$	0.1531	$0 \cdot 17$
$\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)$	0.1491	0.84	$\mathrm{C}_{\mathrm{G}}^{\prime}(2)-\mathrm{O}_{\mathrm{R}}(2)$	0.1294	0.04
$\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)$	0.1494	1.00	$\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)$	0.1517	$0 \cdot 00$
$\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)$	0.1493	$0 \cdot 96$	$\mathrm{C}_{R}^{\prime}(1)-\mathrm{O}_{\mathrm{R}}(1)$	0.1284	$0 \cdot 08$
$\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)$	0.1483	$0 \cdot 29$			

Bond angles

Angle	θ, deg	$\underset{\mathrm{kJ} \mathrm{~mol}}{ }{ }^{E^{0}}$	Angle	$\theta, \operatorname{deg}$	$\underset{\mathrm{kJ} \mathrm{~mol}}{ }{ }^{E^{\theta}}$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	90.8	0.04	$\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)$	106.2	0.80
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(1)$	87.0	0.54	$\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)-\mathrm{O}_{\mathrm{G}}(1)$	118.2	$0 \cdot 33$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(2)$	$95 \cdot 5$	1.84	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)$	109:5	$4 \cdot 06$
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)$	$87 \cdot 2$	$0 \cdot 46$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)$	102.3	$1 \cdot 93$
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(2)$	$87 \cdot 1$	$0 \cdot 50$	$\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)$	$105 \cdot 3$	$1 \cdot 30$
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(2)$	85.9	1.05	$\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)-\mathrm{O}_{\mathrm{G}}(2)$	118.1	0.33
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)$	$97 \cdot 3$	$3 \cdot 35$	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)$	109.4	$4 \cdot 14$
$\mathrm{O}_{\mathrm{G}}(1)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(2)$	85.8	$1 \cdot 09$	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)$	109.6	$0 \cdot 00$
$\mathrm{O}_{\mathrm{G}}(1)-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(2)$	$97 \cdot 1$	$3 \cdot 18$	$N(1)-C_{R}(1)-C_{R}^{\prime}(1)$	109.6	0.00
$\mathrm{O}_{\mathrm{G}}(1)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)$	89.8	$0 \cdot 00$	$\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)-\mathrm{O}_{\mathrm{R}}(1)$	118.3	0.29
$\mathrm{O}_{\mathrm{R}}(2)-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(2)$	91.9	0.21	$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)$	114.2	$1 \cdot 26$
$\mathrm{O}_{\mathrm{G}}(2)-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)$	85.7	$1 \cdot 13$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)$	108.2	$0 \cdot 08$
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)$	104.2	$1 \cdot 00$	$\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)$	$109 \cdot 6$	$0 \cdot 00$
$\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{\mathrm{E}}(2)$	$110 \cdot 6$	$0 \cdot 13$	$\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)-\mathrm{O}_{\mathrm{R}}(2)$	$118 \cdot 1$	$0 \cdot 38$
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)$	107.9	$0 \cdot 08$	$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)$	114.0	$1 \cdot 34$
$N(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}_{\mathrm{E}}(1)$	106.4	0.88	$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)$	114.4	$2 \cdot 26$
$N(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}^{\text {c }}$	114.5	$2 \cdot 34$	$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)$	115.0	2.76
$\mathrm{C}_{E}(2)-\mathrm{C}_{E}(1)-\mathrm{C}^{e}$	113.9	1.84	$\mathrm{C}_{\mathrm{G}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)$	$110 \cdot 0$	0.00
$N(2)-C_{E}(2)-\mathrm{C}^{\text {a }}$	114.4	2.26	$\mathrm{C}_{\mathrm{E}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)$	118.3	7.08
$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{E}(2)-\mathrm{C}^{\text {a }}$	114.2	$2 \cdot 05$	$\mathrm{C}_{\mathrm{E}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)$	$110 \cdot 4$	0.08
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)$	$102 \cdot 6$	1.72	$\mathrm{C}_{\mathrm{G}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)$	109.1	$0 \cdot 00$

Table II
(Continued)

Angle	ϕ, deg	Torsion $\underset{\mathrm{kJ} \mathrm{~mol}^{-1}}{E^{\Phi}}$	angles Angle	¢, deg	$\underset{\mathrm{kJ} \mathrm{~mol}^{-1}}{E^{\Phi}}$
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{\mathrm{E}}(2)$	-40.8	$1 \cdot 24$	$\mathrm{C}_{\mathrm{R}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)$	-77.1	1.80
$\mathrm{C}_{\mathrm{G}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{\mathrm{E}}(2)$	-152.0	$1 \cdot 24$	$\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)-\mathrm{O}_{\mathrm{G}}(1)$	-26.6	2.05
$\mathrm{C}_{\mathrm{R}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{\mathrm{E}}(2)$	79.3	1.24	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)-\mathrm{C}_{\mathrm{G}}(1)$	$2 \cdot 2$	0.04
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}^{\text {e }}$	-171.2	$1 \cdot 24$	$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)$	$6 \cdot 7$	6.22
$\mathrm{C}_{\mathrm{G}}(1)-\mathrm{N}(1)-\mathrm{C}_{E}(1)-\mathrm{C}^{\text {e }}$	77.5	1.24	$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)$	$-110 \cdot 3$	6.22
$\mathrm{C}_{\mathrm{R}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}^{\text {e }}$	- 51.2	$1 \cdot 24$	$\mathrm{C}_{\mathrm{G}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)$	118.8	6.22
$N(1)-C_{E}(1)-C_{E}(2)-N(2)$	$49 \cdot 5$	$0 \cdot 69$	$\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)-\mathrm{O}_{\mathrm{R}}(1)$	$0 \cdot 0$	$0 \cdot 02$
$N(1)-C_{E}(1)-C_{E}(2)-C^{\text {a }}$	-77.8	0.69	$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)-\mathrm{C}_{\mathrm{R}}(1)$	$7 \cdot 1$	0.37
$N(2)-C_{E}(2)-C_{E}(1)-C^{e}$	-179.8	$0 \cdot 69$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)$	41.7	1.05
$C^{e}-C_{E}(1)-C_{E}(2)-C^{e}$	53.0	0.69	$\mathrm{C}_{\mathrm{E}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)$	$160 \cdot 1$	1.05
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}_{\mathrm{E}}(1)$	$-32 \cdot 1$	3.66	$\mathrm{C}_{\mathrm{R}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}(2)$	-72.6	1.05
$\mathrm{C}_{\mathrm{G}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}_{\mathrm{E}}(1)$	-147.4	3.66	$\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)-\mathrm{O}_{\mathrm{G}}(2)$	- 26.8	2.05
$\mathrm{C}_{\mathrm{R}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}_{\mathrm{E}}(1)$	86.0	$3 \cdot 66$	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}(2)-\mathrm{C}_{\mathrm{G}}^{\prime}(2)-\mathrm{C}_{\mathrm{G}}(2)$	-4.4	$0 \cdot 15$
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}^{\text {a }}$	$95 \cdot 1$	$3 \cdot 66$	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)$	17.8	$5 \cdot 26$
$\mathrm{C}_{\mathrm{G}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}^{\text {a }}$	- 20.2	$3 \cdot 66$	$\mathrm{C}_{\mathrm{E}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)$	$-100 \cdot 1$	$5 \cdot 26$
$\mathrm{C}_{\mathrm{R}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}^{\text {a }}$	-146.9	$3 \cdot 66$	$\mathrm{C}_{\mathrm{G}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)$	128.3	$5 \cdot 26$
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)$	$39 \cdot 5$	1.80	$N(2)-\mathrm{C}_{\mathrm{R}}(2)-\mathrm{C}_{R}^{\prime}(2)-\mathrm{O}_{\mathrm{R}}(2)$	-12.1	$0 \cdot 80$
$\mathrm{C}_{\mathrm{E}}(1)-\mathrm{N}(1)-\mathrm{C}_{\mathrm{G}}(1)-\mathrm{C}_{\mathrm{G}}^{\prime}(1)$	$151 \cdot 7$	$1 \cdot 80$	$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}(2)-\mathrm{C}_{\mathrm{R}}^{\prime}(2)-\mathrm{C}_{\mathrm{R}}(2)$	- 0.5	0.00

Non-bonding interactions greater than $0.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\text { Atoms } \quad E^{\mathrm{NB}}, \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \text { Atoms } \quad E^{\mathrm{NB}}, \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\mathrm{C}_{\mathrm{E}}(1) \ldots \mathrm{H}_{\mathrm{R}}^{\mathrm{e}}(1)$	0.92
$\mathrm{C}_{\mathrm{E}}(2) \ldots \mathrm{H}_{\mathrm{R}}^{\mathrm{e}}(2)$	1.59
$\mathrm{C}_{\mathrm{G}}(1) \ldots \mathrm{O}_{\mathrm{R}}(2)$	0.92
$\mathrm{C}_{\mathrm{G}}(1) \ldots \mathrm{H}_{\mathrm{R}}^{2}(1)$	2.51
$\mathrm{C}_{\mathrm{G}}(1) \ldots \mathrm{H}_{\mathrm{R}}^{\mathrm{a}}(1)$	1.04
$\mathrm{C}_{\mathrm{R}}(2) \ldots \mathrm{C}_{\mathrm{G}}^{\prime}(2)$	1.21
$\mathrm{C}_{\mathrm{R}}(2) \ldots \mathrm{H}_{\mathrm{E}}^{\mathrm{e}}{ }^{(2)}$	1.67
$\mathrm{C}_{\mathrm{G}}(2) \ldots \mathrm{O}_{\mathrm{R}}(1)$	0.88
$\mathrm{C}_{\mathrm{G}}(2) \ldots \mathrm{H}_{\mathrm{R}}^{\mathrm{a}}(2)$	2.55
$\mathrm{C}_{\mathrm{G}}(2) \ldots \mathrm{C}^{\text {a }}$	1.76
$\mathrm{C}_{\mathrm{R}}(1) \ldots \mathrm{H}_{\mathrm{G}}^{\mathrm{e}}(1)$	0.88
$\mathrm{C}^{\prime}(1) \ldots \mathrm{H}^{3}\left(\mathrm{C}^{e}\right)$	2.97
$\mathrm{O}_{\mathrm{R}}(2) \ldots \mathrm{H}_{\mathrm{G}}^{\mathrm{a}}$ (1)	0.92

Table III
Minimized geometry and deformation energy of Λ-[$\operatorname{Co((R,R)-DBTA)}]^{-}$

Bond	Bond lengths				
	R, nm	$E^{\mathrm{R}}, \mathrm{kJ} \mathrm{mol}^{-1}$	Bond	R, nm	$\mathrm{R}^{\mathbf{R}}, \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{Co}-\mathrm{N}$	$0 \cdot 1938$	$0 \cdot 17$	$\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	$0 \cdot 1529$	0.13
$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}$	$0 \cdot 1894$	0.04	$\mathrm{C}_{\mathrm{G}}^{\prime}-\mathrm{O}_{\mathrm{G}}$	0.1293	0.04
$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}$	$0 \cdot 1893$	0.04	$\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	0.1494	1.00
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}$	0.1496	$1 \cdot 21$	$\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	$0 \cdot 1516$	$0 \cdot 00$
$\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	$0 \cdot 1555$	0.96	$\mathrm{C}_{\mathrm{R}}^{\prime}-\mathrm{O}_{\mathrm{R}}$	0.1284	$0 \cdot 08$
$\mathrm{N}-\mathrm{C}_{\mathrm{G}}$	0.1485	$0 \cdot 38$			
Bond angles					
Angle	$0, \mathrm{deg}$	$E^{\theta}, \mathrm{kJ} \mathrm{mol}^{-1}$	Angle	θ, deg	$E^{0}, \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{N}-\mathrm{Co}-\mathrm{N}$	900	$0 \cdot 00$	$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}$	$101 \cdot 8$	$2 \cdot 18$
$\mathrm{N}-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}$	86.9	0.62	$\mathrm{N}-\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	$105 \cdot 8$	1.00
$\mathrm{N}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}$	87.4	$0 \cdot 42$	$\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}-\mathrm{O}_{\mathrm{G}}$	$118 \cdot 0$	$0 \cdot 38$
$\mathrm{N}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}^{\text {S }}$	$97 \cdot 1$	$3 \cdot 10$	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	$109 \cdot 2$	$4 \cdot 27$
$\mathrm{O}_{\mathrm{G}}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}^{\mathrm{s}}$	$85 \cdot 7$	$1 \cdot 17$	$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	108.7	0.04
$\mathrm{O}_{\mathrm{G}}-\mathrm{Co}-\mathrm{O}_{\mathrm{R}}$	$90 \cdot 2$	$0 \cdot 00$	$\mathrm{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	$109 \cdot 9$	0.00
$\mathrm{O}_{\mathrm{G}}-\mathrm{Co}-\mathrm{O}_{\mathrm{G}}$	$97 \cdot 1$	$3 \cdot 18$	$\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}-\mathrm{O}_{\mathrm{R}}$	118.2	$0 \cdot 29$
$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}$	$108 \cdot 8$	$0 \cdot 00$	$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}^{\prime}$	113.9	$1 \cdot 38$
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	$109 \cdot 8$	$0 \cdot 00$	$\mathrm{C}_{\mathrm{E}}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}$	117.4	$5 \cdot 69$
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	114.4	2.22	$\mathrm{C}_{\mathrm{E}}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	$110 \cdot 9$	0.17
$\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	$110 \cdot 7$	$0 \cdot 13$	$\mathrm{C}_{\mathrm{G}}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}$	108.7	$0 \cdot 04$

Torsion angles
Angle $\quad \phi, \operatorname{deg} \quad E^{\theta}, \mathrm{kJ} \mathrm{mol}^{-1} \quad$ Angle $\quad \phi, \operatorname{deg} \quad E^{\theta}, \mathrm{kJ} \mathrm{mol}^{-1}$

$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	- 30.0	$3 \cdot 84$	$\mathrm{C}_{\mathrm{E}}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	$160 \cdot 2$	1.03
$\mathrm{C}_{\mathrm{G}}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	-144.8	$3 \cdot 84$	$\mathrm{C}_{\mathrm{R}}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}-\mathrm{G}_{\mathrm{G}}^{\prime}$	- 72.9	$1 \cdot 03$
$\mathrm{C}_{\mathrm{R}}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$	89.4	$3 \cdot 84$	$\mathrm{N}-\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}-\mathrm{O}_{\mathrm{G}}$	- 28.7	2.09
$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	95.2	$3 \cdot 84$	$\mathrm{Co}-\mathrm{O}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}-\mathrm{C}_{\mathrm{G}}$	- 1.7	0.02
$\mathrm{C}_{\mathrm{G}}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	- 19.6	$3 \cdot 84$	$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	$12 \cdot 0$	5.96
$\mathrm{C}_{\mathrm{R}}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	-145.4	$3 \cdot 84$	$\mathrm{C}_{\mathrm{E}}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	-107.5	5.96
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{N}$	$39 \cdot 8$	3.99	$\mathrm{C}_{\mathrm{G}}-\mathrm{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}$	122.0	5.96
$\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	-87.4	3.99	$\mathrm{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}-\mathrm{O}_{\mathrm{R}}$	- 4.1	$0 \cdot 15$
$\mathrm{C}^{\mathrm{a}}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\text {a }}$	145.4	3.99	$\mathrm{Co}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{R}}^{\prime}-\mathrm{C}_{\mathrm{R}}$	- 6.4	0.31
$\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{G}}-\mathrm{C}_{\mathrm{G}}^{\prime}$	41.7	1.03			

Table III
(Continued)

Non-bonding interactions greater than $0.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$			
Atoms	$E^{\mathrm{NB}}, \mathrm{kJ} \mathrm{mol}^{-1}$	Atoms	$E^{\mathrm{NB}}, \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{C}_{\mathrm{E}} \cdots \mathrm{H}_{\mathrm{R}}^{\mathrm{e}}$	1.72	$\mathrm{H}_{\mathrm{G}}^{\mathrm{a}} \ldots \mathrm{O}_{\mathrm{R}}^{\text {s }}$	1.21
$\mathrm{C}_{\mathrm{G}} \ldots \mathrm{O}_{\mathrm{R}}^{\mathrm{s}}$	0.92	$\mathrm{H}_{\mathrm{G}}^{\mathrm{a}} \ldots \mathrm{C}^{\text {a }}$	1.84
$\mathrm{C}_{\mathrm{G}} \cdots \mathrm{H}_{\mathrm{R}}^{\mathrm{a}}$	$2 \cdot 81$	$\mathrm{H}_{\mathrm{G}}^{\mathrm{a}} \ldots \mathrm{H}^{2}\left(\mathrm{C}^{\text {a }}\right.$)	1.05
$\mathrm{C}_{\mathrm{G}} \ldots \mathrm{C}^{\text {a }}$	2.05	$\mathrm{H}_{\mathrm{G}}^{\mathrm{a}} \ldots \mathrm{H}^{3}\left(\mathrm{C}^{\text {a }}\right.$)	$1 \cdot 38$
$\mathrm{C}_{G}^{\prime} \ldots \mathrm{C}_{\mathrm{R}}$	$1 \cdot 13$	$\mathrm{H}_{\mathrm{G}}^{\mathrm{e}} \ldots \mathrm{H}_{\mathrm{R}}^{\mathrm{a}}$	1.21
$\mathrm{C}_{\mathrm{R}} \ldots \mathrm{H}_{\mathrm{G}}^{\mathrm{e}}$	0.84	$\mathrm{H}_{\mathrm{R}}^{\mathrm{e}} \ldots \mathrm{H}_{\mathrm{E}}^{\mathrm{e}}$	3.56
	1.59	$\mathrm{C}^{\text {a }} \ldots \mathrm{H}_{\mathrm{E}}^{\text {es }}$	0.96
$C_{R}^{\prime} \cdots H^{3}\left(C^{2}\right)^{s}$	$2 \cdot 64$	$\mathrm{H}_{\mathrm{E}}^{\mathrm{e}} \ldots \mathrm{H}^{1}\left(\mathrm{C}^{2}\right)^{\mathrm{s}}$	0.84

steric strain caused by non-bonding interactions between the equatorial methyl group and the $\mathrm{H}_{\mathrm{R}}^{\mathrm{e}}$ atom, $\left(\mathrm{H}_{\mathrm{R}}^{\mathrm{e}} \ldots \mathrm{H}^{3}\left(\mathrm{C}^{\mathrm{e}}\right)\right)$ which is the largest non-bonding interaction in the complex $\left(3.52 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. This steric strain is reflected in large deformation of the bonding angles $\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\mathrm{e}}$ and $\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}^{\mathrm{c}}\left(1.76\right.$ and $\left.1.00 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and is one of the reasons for the increased length of the $\mathrm{N}-\mathrm{C}_{\mathrm{R}}$ bond by 0.0022 nm compared with the "ideal" value.

Introduction of one methyl group into the axial position of the E ring in Λ - $[\mathrm{Co}((R, S) \text {-DBTA })]^{-}$(Fig. 3) leads to repulsion between the axial methyl group and the atoms of the R ring, which has no analogy in the $\Lambda-[\mathrm{Co}((S, S)-\mathrm{DBTA})]^{-}$ isomer. As a result of the relaxation process, the magnitude of this interaction decreased during the minimization compared with the initial model, but at the cost of deformation of some of the bonding parameters. The $\mathrm{C}_{\mathrm{E}}(2)$ atom approached the plane $\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$, decreasing the $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{C}_{\mathrm{E}}(1)$ torsion angle to $32 \cdot 1^{\circ}$ (torsion energy $3.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$) compared with 40.8° in $\mathrm{Co}(\text { EDTA })^{-}$and the $\mathrm{N}(1)-\mathrm{C}_{\mathrm{E}}(1)-\mathrm{C}_{\mathrm{E}}(2)-\mathrm{N}(2)$ angle decreased to 49.5° (it equals 55.6° in the EDTA complex). Through rotation around the $\mathrm{N}(2)-\mathrm{C}_{\mathrm{E}}(2)$ bond, the $\mathrm{H}_{\mathrm{E}}^{e}(2)$ and $\mathrm{H}_{\mathrm{R}}^{\mathrm{e}}(2)$ atoms approached each other and their repulsion energy increased from a value of 1.72 in the $[\mathrm{Co}(\text { EDTA })]^{-}$complex to $3.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The $\mathrm{C}_{\mathrm{E}}(2)-\mathrm{N}(2)-\mathrm{C}_{\mathrm{G}}(2)$ angle increased to 118.3° and the corresponding deformation energy is $7.08 \mathrm{~kJ} \mathrm{~mol}^{-1}$. As a result of these changes, the torsion strain in the $\mathrm{R}(2)$ ring is somewhat decreased. The $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}_{\mathbf{R}}(2)-\mathrm{C}_{\mathbf{R}}^{\prime}(2)$ torsion angle has a value of $17 \cdot 8^{\circ}$, which is significantly greater than the analogous value $11 \cdot 5^{\circ}$ in the EDTA complex or the value of $6 \cdot 7^{\circ}$ for the $\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}_{\mathrm{R}}(1)-\mathrm{C}_{\mathrm{R}}^{\prime}(1)$ angle in the second R ring of the same complex.

In the $\Lambda-[\mathrm{Co}((R, R)-\mathrm{DBTA})]^{-}$isomer (Fig. 4) there are large repulsion interactions between the axial methyl groups and the atoms of the R and G rings. Partial compensation of this strain is connected with a large decrease in the torsion angles in the E ring. The $\mathrm{Co}-\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}$ torsion angle decreased to -30.0° and the $\mathrm{N}-\mathrm{C}_{\mathrm{E}}-\mathrm{C}_{\mathrm{E}}-\mathrm{N}$ angle to 39.8° with torsion energies of 3.84 and $3.99 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The analogously calculated torsion angles for the $[\mathrm{Co}(\text { EDTA })]^{-}$complex are 40.8 and 55.6°.

Table IV lists the results of statistical-thermodynamic calculations for the $[\mathrm{Co}(\text { DBTA })]^{-}$complex anions. The vibrational contributions to the enthalpy and the vibrational entropy contributions are not significant for the overall free energy. A decisive factor for the relative stabilities of the complexes of DBTA is non-bonding energy. The axial methyl group on the ethylenediamine ring is a destabilizing factor, especially for repulsion interactions with atoms of the R ring. Consequently, formation of the $\Lambda-[\mathrm{Co}((R, R) \text {-DBTA })]^{-}$isomer in solution is thermodynamically improbable. DBTA exhibits high, possibly absolute diastereoselectivity. (R, R)-DBTA will coordinate to form a complex with absolute Δ configuration and (S, S)-DBTA with absolute Λ configuration.

Although experimental stability constants for Co (III) complexes are not available, it appears that the theoretical calculations at least qualitatively explain the difference in the stabilities of the complexes of the meso and racemic forms of DBTA. The calculated difference (in units of the logarithm of the stability constant) for co-

Table IV

Results of the calculation of the deformation energy and statistical thermodynamic functions of the Λ-[Co(DBTA) $]^{-}$complexes for a temperature of 298.15 K . For comparison ${ }^{6}$, the values for the $\mathrm{Co}(E D T A)^{-}$anion are also given (Results are given in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$)

Function	(R, R)-DBTA	(R, S)-DBTA	(S, S)-DBTA	EDTA
$E(\mathrm{R})$	7.83	6.49	5.32	3.01
$E(\theta)$	60.12	64.85	55.18	43.04
$E(\phi)$	31.07	25.71	26.71	23.49
$E(\mathrm{NB})$	0.21	-5.78	-13.15	-12.56
$E_{\text {total }}$	99.19	91.31	74.06	56.98
$H_{\text {v.r. }}$	53.51	54.43	55.14	47.48
$Z P E$	807.63	802.92	800.62	654.29
$T^{*} \mathrm{~S}_{\text {v.r.T. }}$	171.58	175.64	178.11	161.57
G	788.75	773.01	751.70	597.16
ΔG	37.05	21.31	0.00	-
$\Delta \log K$	-6.51	-3.74	0.00	-
				-

balt(III) complexes, 3.7 , is comparable with the values in the range $2.0-2.7$ for complexes of the alkaline earths ${ }^{7}, 1 \cdot 5-2.6$ for some transition metals ${ }^{8,10}$ or 1.8 to 3.2 for lanthanoids. Assuming that DBTA acts as a hexadentate ligand in the complex, the complexes of the meso form are less stable because of steric strain. It is possible that this strain will be so large in some octahedral complexes of the meso form that one glycine ring will be opened, similarly as in some EDTA complexes ${ }^{17,18}$. The enthalpy change will be more favourable for complex formation, but the translational entropy contribution to the free energy will be smaller, because one less water molecule is freed during chelation ${ }^{19}$. Further study is necessary to decide whether the G ring is opened as in EDTA complexes, or the R ring.

REFERENCES

1. Altona C., Faber D. H.: Topics Current Chem. 45, 1 (1974).
2. Ermer O.: Struct. Bond. 27, 161 (1976).
3. Allinger N. L.: Advan. Phys. Org. Chem. 13, 1 (1976).
4. Niketić S. R., Rasmusen K.: The Consistent Force Field. A Documentation. Lecture Nores in Chemistry 3. p. 1-12. (G. Berthier, Ed.), Springer-Verlag, Berlin 1977.
5. Pavelčí F., Majer J.: This Journal 43, 1450 (1978).
6. Paveľ̌ík F., Majer J.: This Journal 43, 239 (1978).
7. Majer J., Dvořáková E.: Chem. Zvesti 17, 402 (1963).
8. Majer J., Novák V., Svičeková M.: Chem. Zvesti 18, 481 (1964).
9. Novák V., Majer J., Svičeková M.: Chem. Zvesti 19, 817 (1965).
10. Dvořáková E., Majer J.: Chem. Zvesti 20, 233 (1966).
11. Novák V., Svǐ̌eková M., Majer J.: Chem. Zvesti 20, 252 (1966).
12. Paveľ̌ík F.: Unpublished results.
13. Boyd R. H.: J. Chem. Phys. 49, 2574 (1968).
14. Buckingham D. A.: J. Amer. Chem. Soc. 96, 1713 (1974).
15. Weakliem H. A., Hoard J. L.: J. Amer. Chem. Soc. 81, 549 (1959).
16. Paveľ̌ik F.: Unpublished results.
17. Lee B.: Inorg. Chem. 11, 1072 (1972).
18. Porai-Koshits M. A.: Proc. of the $\mathrm{IV}^{\text {th }}$ Conf. on Coord. Chem., Smolenice 1973, p. 76.
19. Chung Chung-Sun: Inorg. Chem. 18, 1321 (1979).
20. Brown M. F., Cook B. R., Sloan T. E.; Inorg. Chem. 14, 1273 (1975).
21. IUPAC: Inorg. Chem. 9, 1 (1970).

Translated by M. Štuliková.

